
Package: seqimpute (via r-universe)
August 26, 2024

Type Package

Title Imputation of Missing Data in Sequence Analysis

Version 2.0.0

Description Multiple imputation of missing data present in a dataset
through the prediction based on either a random forest or a
multinomial regression model. Covariates and time-dependent
covariates can be included in the model. The prediction of the
missing values is based on the method of Halpin (2012)
<https://researchrepository.ul.ie/articles/report/Multiple_imputation_for_
life-course_sequence_data/19839736>.

License GPL-2

Imports Amelia, cluster, dfidx, doRNG, doSNOW, dplyr, foreach,
graphics, mlr, nnet, parallel, plyr, ranger, rms, stats,
stringr, TraMineR, TraMineRextras, utils, mice

Suggests R.rsp, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder R.rsp

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Repository https://emerykevin.r-universe.dev

RemoteUrl https://github.com/emerykevin/seqimpute

RemoteRef HEAD

RemoteSha f5770d88ee7cb67f078d0d084f639d9acfd0250d

Contents
addcluster . 2
fromseqimp . 3
gameadd . 4
plot.seqimp . 4

1

https://researchrepository.ul.ie/articles/report/Multiple_imputation_for_life-course_sequence_data/19839736
https://researchrepository.ul.ie/articles/report/Multiple_imputation_for_life-course_sequence_data/19839736

2 addcluster

print.seqimp . 5
seqaddNA . 5
seqcomplete . 7
seqimpute . 8
seqmissfplot . 11
seqmissimplic . 12
seqmissIplot . 13
seqQuickLook . 14
seqTrans . 15
seqwithmiss . 16
summary.seqimp . 16

Index 18

addcluster Function that adds the clustering result to a seqimp object obtained
with the seqimpute function

Description

Function that adds the clustering result to a seqimp object obtained with the seqimpute function

Usage

addcluster(impdata, clustering)

Arguments

impdata An object of class seqimp as created by the seqimpute function

clustering clustering made on the multiple imputed dataset. Can either be a dataframe or
a matrix, where each row correspond to an observation and each column to a
multiple imputed dataset

Value

Returns a seqimp object containing the cluster to which each sequence in each imputed dataset
belongs. Specifically, a column named cluster is added to the imputed datasets.

fromseqimp 3

fromseqimp Transform an object of class seqimp into a dataframe or a mids object

Description

The function converts a seqimp object into a specified format.

Usage

fromseqimp(data, format = "long", include = FALSE)

Arguments

data An object of class seqimp as created by the function seqimpute

format The format in which the seqimp object should be returned. It could be: "long",
"stacked" and "mids". See the Details section for the interpretation.

include logical that indicates if the original dataset with missing value should be in-
cluded or not. This parameter does not apply if format="mids".

Details

The argument format specifies the object that should be returned by the function. It can take the
following values

"long" produces a data set in which imputed data sets are stacked vertically. The following
columns are added: 1) .imp referring to the imputation number, and 2) .id the row names of
the original dataset

"stacked" the same as "long", but without the inclusion of the two columns .imp and .id

"mids" produces an object of class mids, which is the format used by the mice package.

Value

Transform a seqimp object into the desired format.

Author(s)

Kevin Emery

Examples

Not run:
Imputation with the MICT algorithm
imp <- seqimpute(data = gameadd, var = 1:4)

The object imp is transformed to a dataframe, where completed datasets are
stacked vertically

imp.stacked <- fromseqimp(data = imp,

4 plot.seqimp

format = "stacked", include = FALSE)

End(Not run)

gameadd Example data set: Game addiction

Description

Dataset containing variables on the gaming addiction of young people. The data consists of gaming
addiction, coded as either ’no’ or ’yes’, measured over four consecutive years for 500 individuals,
three covariates and one time-dependent covariate. The yearly states are recorded in columns 1
(T1_abuse) to 4 (T4_abuse).

The three covariates are

• Gender (female or male),

• Age (measured at time 1),

• Track (school or apprenticeship).

The time-varying covariate consists of the individual’s relationship to gambling at each of the four
time points, appearing in columns T1_gambling, T2_gambling, T3_gambling, and T4_gambling.
The states are either no, gambler or problematic gambler

Usage

data(gameadd)

Format

A data frame containing 500 rows, 4 states variable, 3 covariates and a time-dependent covariate.

plot.seqimp Plot a seqimp object

Description

Plot a seqimp object. The state distribution plot of the first m completed datasets is shown, possibly
alongside the original dataset with missing data

Usage

S3 method for class 'seqimp'
plot(x, m = 5, include = TRUE, ...)

print.seqimp 5

Arguments

x Object of class seqimp

m Number of completed datasets to show

include logical that indicates if the original dataset with missing value should be plotted
or not

... Arguments to be passed to the seqdplot function

Author(s)

Kevin Emery

print.seqimp Print a seqimp object

Description

Print a seqimp object

Usage

S3 method for class 'seqimp'
print(x, ...)

Arguments

x Object of class seqimp

... additional arguments passed to other functions

Author(s)

Kevin Emery

seqaddNA Generation of missing on longitudinal categorical data.

Description

Generation of missing data under the form of gaps, which is the typical form of missing data with
longitudinal data. It simulates MCAR or MAR missing data.

6 seqaddNA

Usage

seqaddNA(
data,
var = NULL,
states.high = NULL,
propdata = 1,
pstart.high = 0.1,
pstart.low = 0.005,
maxgap = 3,
only.traj = FALSE

)

Arguments

data a data frame containing sequences of a multinomial variable with missing data
(coded as NA)

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

states.high list of states that have a larger probability of triggering a subsequent missing
data gap

propdata proportion observations for which missing data is simulated

pstart.high probability to start a missing data for the states specified with the states.high
argument

pstart.low probability to start a missing data for the other states

maxgap maximum length of a missing data gap

only.traj logical that specifies whether only the trajectories should be returned (only.traj=TRUE),
or the whole data (only.traj=FALSE)

Value

Returns a data frame on which missing data were simulated

Author(s)

Kevin Emery

Examples

Generate MCAR missing data on the mvad dataset
from the TraMineR package

Not run:
data(mvad, package = "TraMineR")
mvad.miss <- seqaddNA(mvad, var = 17:86)

Generate missing data on mvad where joblessness is more likely to trigger

seqcomplete 7

a missing data gap
mvad.miss2 <- seqaddNA(mvad, var = 17:86, states.high = "joblessness")

End(Not run)

seqcomplete Extract all the trajectories without missing value.

Description

Extract all the trajectories without missing value.

Usage

seqcomplete(data, var = NULL)

Arguments

data either a data frame containing sequences of a multinomial variable with missing
data (coded as NA) or a state sequence object built with the TraMineR package

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

Value

Returns either a data frame or a state sequence object, depending the type of data that was provided
to the function

Author(s)

Kevin Emery

Examples

Game addiction dataset
data(gameadd)
Extract the trajectories without any missing data
gameadd.complete <- seqcomplete(gameadd, var = 1:4)

8 seqimpute

seqimpute seqimpute: Imputation of missing data in longitudinal categorical
data

Description

The seqimpute package implements the MICT and MICT-timing methods. These are multiple im-
putation methods for longitudinal data. The core idea of the algorithms is to fills gaps of missing
data, which is the typical form of missing data in a longitudinal setting, recursively from their edges.
The prediction is based on either a multinomial or a random forest regression model. Covariates
and time-dependent covariates can be included in the model.

The MICT-timing algorithm is an extension of the MICT algorithm designed to address a key limi-
tation of the latter: its assumption that position in the trajectory is irrelevant.

Usage

seqimpute(
data,
var = NULL,
np = 1,
nf = 1,
m = 5,
timing = FALSE,
frame.radius = 0,
covariates = NULL,
time.covariates = NULL,
regr = "multinom",
npt = 1,
nfi = 1,
ParExec = FALSE,
ncores = NULL,
SetRNGSeed = FALSE,
verbose = TRUE,
available = TRUE,
pastDistrib = FALSE,
futureDistrib = FALSE,
...

)

Arguments

data a data frame containing sequences of a categorical variable with missing data
(coded as NA)

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

np number of previous observations in the imputation model of the internal gaps.

seqimpute 9

nf number of future observations in the imputation model of the internal gaps.

m number of multiple imputations (default: 5).

timing a logical value that specifies if the MICT algorithm (timing=FALSE) or the
MICT-timing algorithm (timing=TRUE) should be used.

frame.radius parameter relative to the MICT-timing algorithm specifying the radius of the
timeframe.

covariates the list of columns containing the covariates to include in the imputation process
time.covariates

the list of columns containing the time-varying covariates to include in the im-
putation process

regr a character specifying the imputation method. If regr="multinom", multino-
mial models are used, while if regr="rf", random forest models are used.

npt number of previous observations in the imputation model of the terminal gaps.

nfi number of future observations in the imputation model of the initial gaps.

ParExec logical. If TRUE, the multiple imputations are run in parallel. This allows faster
run time depending of how many cores the processor has.

ncores integer. Number of cores to be used for the parallel computation. If no value is
set for this parameter, the number of cores will be set to the maximum number
of CPU cores minus 1.

SetRNGSeed an integer that is used to set the seed in the case of parallel computation. Note
that setting set.seed() alone before the seqimpute function won’t work in case
of parallel computation.

verbose logical. If TRUE, seqimpute will print history and warnings on console. Use
verbose=FALSE for silent computation.

available a logical value allowing the user to choose whether to consider the already im-
puted data in the predictive model (available = TRUE) or not (available =
FALSE).

pastDistrib a logical indicating if the past distribution should be used as predictor in the
imputation model.

futureDistrib a logical indicating if the future distribution should be used as predictor in the
imputation model.

... Named arguments that are passed down to the imputation functions.

Details

The imputation process is divided into several steps, depending on the type of gaps of missing data.
The order of imputation of the gaps are:

Internal gap: there is at least np observations before an internal gap and nf after the gap

Initial gap: gaps situated at the very beginning of a trajectory

Terminal gap: gaps situated at the very end of a trajectory

Left-hand side specifically located gap (SLG): gaps that have at least nf observations after
the gap, but less than np observation before it

10 seqimpute

Right-hand side SLG: gaps that have at least np observations before the gap, but less than nf
observation after it

Both-hand side SLG: gaps that have less than np observations before the gap, and less than nf
observations after it

The primary difference between the MICT and MICT-timing algorithms lies in their approach to se-
lecting patterns from other sequences for fitting the multinomial model. While the MICT algorithm
considers all similar patterns regardless of their temporal placement, MICT-timing restricts pattern
selection to those that are temporally closest to the missing value. This refinement ensures that the
imputation process adequately accounts for temporal dynamics, resulting in more accurate imputed
values.

Value

Returns an S3 object of class seqimp.

Author(s)

Kevin Emery <kevin.emery@unige.ch>, Andre Berchtold, Anthony Guinchard, and Kamyar Taher

References

HALPIN, Brendan (2012). Multiple imputation for life-course sequence data. Working Paper
WP2012-01, Department of Sociology, University of Limerick. http://hdl.handle.net/10344/3639.

HALPIN, Brendan (2013). Imputing sequence data: Extensions to initial and terminal gaps, Stata’s.
Working Paper WP2013-01, Department of Sociology, University of Limerick. http://hdl.handle.net/10344/3620

Examples

Default multiple imputation of the trajectories of game addiction with the
MICT algorithm

Not run:
set.seed(5)
imp1 <- seqimpute(data = gameadd, var = 1:4)

Default multiple imputation with the MICT-timing algorithm
set.seed(3)
imp2 <- seqimpute(data = gameadd, var = 1:4, timing = TRUE)

Inclusion in the MICt-timing imputation process of the three background
characteristics (Gender, Age and Track), and the time-varying covariate
about gambling

set.seed(4)
imp3 <- seqimpute(data = gameadd, var = 1:4, covariates = 5:7,

time.covariates = 8:11)

seqmissfplot 11

Parallel computation

imp4 <- seqimpute(data = gameadd, var = 1:4, covariates = 5:7,
time.covariates = 8:11, ParExec = TRUE, ncores=5, SetRNGSeed = 2)

End(Not run)

seqmissfplot Plot the most common patterns of missing data.

Description

Plot function that renders the most frequent patterns of missing data. This function is based on the
seqfplot function.

Usage

seqmissfplot(data, var = NULL, with.complete = TRUE, ...)

Arguments

data a data.frame where missing data are coded as NA or a state sequence object built
with seqdef function

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

with.complete a logical stating if complete trajectories should be included or not in the plot

... parameters to be passed to the seqfplot function

Details

This plot function is based on the seqfplot function. To see which arguments can be changed, see
the seqfplot help. In particular, the number of most frequent patterns to be plotted can be changed
with the argument idxs. By default, the 10 most frequent patterns are plotted.

Author(s)

Kevin Emery

12 seqmissimplic

Examples

Plot the 10 most common patterns of missing data

seqmissfplot(gameadd, var=1:4)

Plot the 10 most common patterns of missing data discarding
complete trajectories

seqmissfplot(gameadd, var=1:4, with.missing = FALSE)

Plot only the 5 most common patterns of missing data discarding
complete trajectories

seqmissfplot(gameadd, var=1:4, with.missing = FALSE, idxs = 1:5)

seqmissimplic Identification and visualization of states that best characterize se-
quences with missing data

Description

Function based on the seqimplic. Identification and visualization of the states that best characterize
the sequence with missing data vs. the sequences without missing data at each position (time point).
See the seqimplic help for more details on how it works.

Usage

seqmissimplic(data, var = NULL, ...)

Arguments

data a data frame where missing data are coded as NA or a state sequence object built
with seqdef function

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

... parameters to be passed to the seqimplic function

Value

returns a seqimplic object that can be plotted and printed.

Author(s)

Kevin Emery

seqmissIplot 13

Examples

For illustration purpose, we simulate missing data on the mvad dataset,
available in the TraMineR package. The state "joblessness" state has a
higher probability of triggering a missing gap

Not run:
data(mvad, package = "TraMineR")
mvad.miss <- seqaddNA(mvad, var = 17:86, states.high = "joblessness")

The states that best characterize sequences with missing data
implic <- seqmissimplic(mvad.miss, var = 17:86)

Visualization of the results
plot(implic)

End(Not run)

seqmissIplot Plot all the patterns of missing data.

Description

#’ @description Plot function that renders all the patterns of missing data. This function is based
on the seqIplot function.

Usage

seqmissIplot(data, var = NULL, with.complete = TRUE, ...)

Arguments

data a data.frame where missing data are coded as NA or a state sequence object built
with seqdef function

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

with.complete a logical stating if complete trajectories should be included or not in the plot

... parameters to be passed to the seqIplotfunction

Author(s)

Kevin Emery

14 seqQuickLook

Examples

Plot all the patterns of missing data

seqmissIplot(gameadd, var=1:4)

Plot all the patterns of missing data discarding
complete trajectories

seqmissIplot(gameadd, var=1:4, with.missing = FALSE)

seqQuickLook Summary of the types of gaps among a dataset

Description

The seqQuickLook() function aimed at providing an overview of the number and size of the dif-
ferent types of gaps spread in the original dataset.

Usage

seqQuickLook(data, var = NULL, np = 1, nf = 1)

Arguments

data a data.frame where missing data are coded as NA or a state sequence object built
with seqdef function

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

np number of previous observations in the imputation model of the internal gaps.

nf number of future observations in the imputation model of the internal gaps.

Details

The distinction between internal and SLG gaps depends on the number of previous (np) and future
(nf) observations that are set for the MICT and MICT-timing algorithms.

Value

Returns a data.frame object that summarizes, for each type of gaps (Internal Gaps, Initial Gaps,
Terminal Gaps, LEFT-hand side SLG, RIGHT-hand side SLG, Both-hand side SLG), the minimum
length, the maximum length, the total number of gaps and the total number of missing they contain.

Author(s)

Andre Berchtold and Kevin Emery

seqTrans 15

Examples

data(gameadd)

seqQuickLook(data = gameadd, var = 1:4, np = 1, nf = 1)

seqTrans Spotting impossible transitions in longitudinal categorical data

Description

The purpose of seqTrans is to spot impossible transitions in longitudinal categorical data.

Usage

seqTrans(data, var = NULL, trans)

Arguments

data a data frame containing sequences of a multinomial variable with missing data
(coded as NA)

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

trans character vector gathering the impossible transitions. For example: trans <-
c("1->3","1->4","2->1","4->1","4->3")

Value

It returns a matrix where each row is the position of an impossible transition.

Author(s)

Andre Berchtold and Kevin Emery

Examples

data(gameadd)

seqTransList <- seqTrans(data = gameadd, var = 1:4, trans = c("yes->no"))

16 summary.seqimp

seqwithmiss Extract all the trajectories with at least one missing value

Description

Extract all the trajectories with at least one missing value

Usage

seqwithmiss(data, var = NULL)

Arguments

data either a data frame containing sequences of a multinomial variable with missing
data (coded as NA) or a state sequence object built with the TraMineR package

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

Value

Returns either a data frame or a state sequence object, depending the type of data that was provided
to the function

Author(s)

Kevin Emery

Examples

Game addiction dataset
data(gameadd)
Extract the trajectories without any missing data
gameadd.withmiss <- seqwithmiss(gameadd, var = 1:4)

summary.seqimp Summary of a seqimp object

Description

Summary of a seqimp object

Usage

S3 method for class 'seqimp'
summary(object, ...)

summary.seqimp 17

Arguments

object Object of class seqimp

... additional arguments passed to other functions

Author(s)

Kevin Emery

Index

∗ datasets
gameadd, 4

addcluster, 2

fromseqimp, 3

gameadd, 4

plot.seqimp, 4
print.seqimp, 5

seqaddNA, 5
seqcomplete, 7
seqdef, 11–14
seqfplot, 11
seqimplic, 12
seqimpute, 3, 8
seqIplot, 13
seqmissfplot, 11
seqmissimplic, 12
seqmissIplot, 13
seqQuickLook, 14
seqTrans, 15
seqwithmiss, 16
summary.seqimp, 16

18

	addcluster
	fromseqimp
	gameadd
	plot.seqimp
	print.seqimp
	seqaddNA
	seqcomplete
	seqimpute
	seqmissfplot
	seqmissimplic
	seqmissIplot
	seqQuickLook
	seqTrans
	seqwithmiss
	summary.seqimp
	Index

